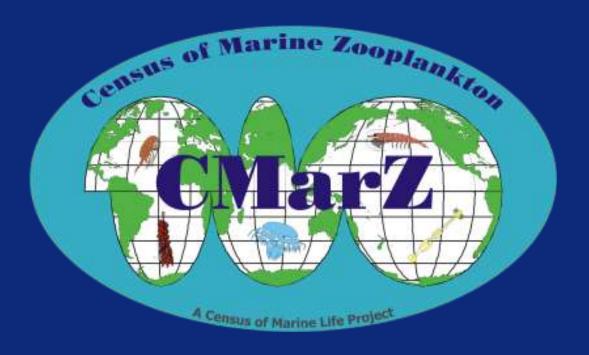


Census of Marine Zooplankton



Ann Bucklin
University of Connecticut – Avery Point, USA

CMarZ Symposium and Steering Group meeting IOCAS, Qingdao CHINA – May 11-13, 2010

CMarZ Steering Group

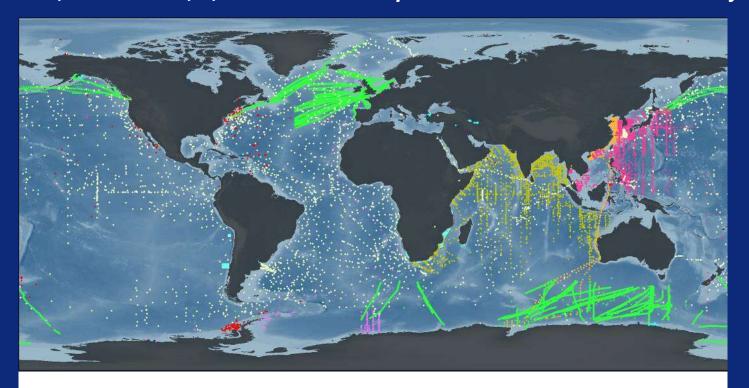
CMarZ Steering Group includes 23 people from 14 countries Shown here with Japanese colleagues at the University of Tokyo, Japan November, 2008

CMarZ Goals

- > Integrated morphological and molecular systematic analysis: CMarZ cruises have included expert taxonomists and barcoders, who work together toward accurate descriptions of zooplankton species diversity, including discovery and description of new species.
- ➤ Global surveys: CMarZ Steering Group members have worked to achieve global sampling from ships of opportunity and dedicated cruises.
- ➤ Biodiversity hotspots: CMarZ has focused on biodiversity hotspots (areas of high probability for species discovery) in the deep sea, coastal regions of Southeast Asia, and other under-sampled ocean regions.

Zooplankton Diversity

Distance				0
_	Phylum		Taxon	Species
1	Foraminifera	1	Foraminifera	49
2	Actinopoda	2	Acantharea	150
		3	Polycystinea (Radiolaria)	350
3	Cercozoa	4	Phaeodarea (Radiolaria)	350
4	Ciliophora	5	Aloricate Ciliata	150
		6	Tintinnida	300
5	Cnidaria	7	Hydromedusae	842
		8	Siphonophora	160
		9	Cubomedusae	18
			Scyphomedusae	161
6	Ctenophora		Ctenophora	90
7	Rotifera		Rotifera	50
	Platyhelminthes		Platyhelminthes	3
	Nematomorpha		Nectonema	5
	Nemertea		Nemertinea	99
11	Annelida	16	Polychaeta	110
12	Mollusca		Gastropoda	144
			Cephalopoda	370
13	Arthropoda		Cladocera	8
		20	Ostracoda	169
			Isopoda	20
			Copepoda	2000
			Mysidacea	700
			Amphipoda	400
			Euphausiacea	86
			Decapoda	50
			Insecta	5
	Chaetognatha		Chaetognatha	93
15	Chordata		Appendicularia	64
			Pyrosoma	8
			Doliolida	17
		32	Salpidae	45
	TOTALS			7,066



Analysis of Global Biodiversity

Since 2004, CMarZ has completed more than 90 cruises and collected samples from > 12,000 stations; 6,500 archived samples have been available for analysis.

- V. Nair (NIO, India) *
- D. Boltovskoy (UBA, Argentina) *
- P.C. Reid (SAHFOS, UK)
- S. Sun (IOCAS, China)

- S. Schnack-Schiel (AWI, Germany)
- P. Wiebe/L. Madin (WHOI, USA)
- S. Nishida (ORI, Japan)
- Others

* Historical collections

CMarZ Biodiversity Surveys

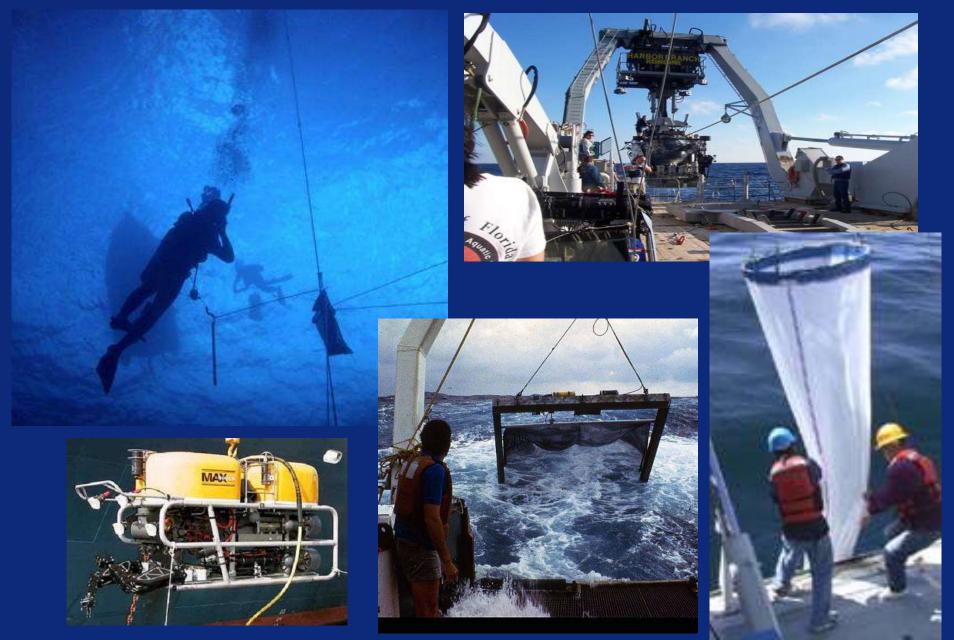
CMarz has carried out comprehensive biodiversity surveys, with at-sea taxonomic analysis of samples, photography of living specimens, and DNA barcoding.

U. Piatkowski & H. Ossenbrügge (left); P. Batta Lona (below)

SPALL CONTROL MIT

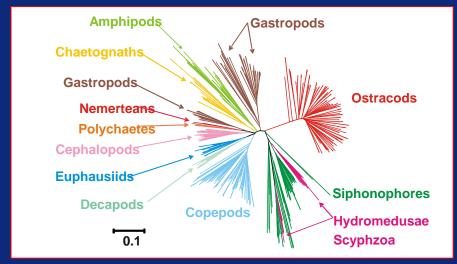
PCR machines

ABI 3130 Capillary Sequencer

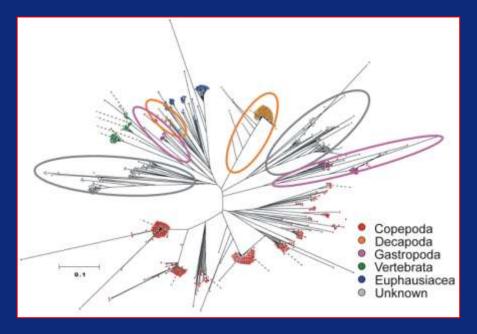


B. Ortman & P. Batta Lona

CMarZ Zooplankton Sampling



DNA Barcoding of Zooplankton

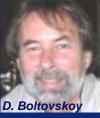

Gold standard barcoding (determination of ~548 base-pair sequence of mtCOI from identified specimens) will yield a ROSETTA STONE for identification of zooplankton species.

Sargasso Sea barcodes: Bucklin, Ortman, et al. Rosetta Stone for zooplankton (2010) Deep-Sea Research II

Environmental barcoding of zooplankton (sequencing of COI from bulk environmental samples) allows rapid biodiversity assessment; species are identified using barcode library.

Barcodes for sample from Pohnpei Island, Micronesia, Equatorial Pacific Ocean: Machida Hashiguchi, et al. (2009) BMC Genomics

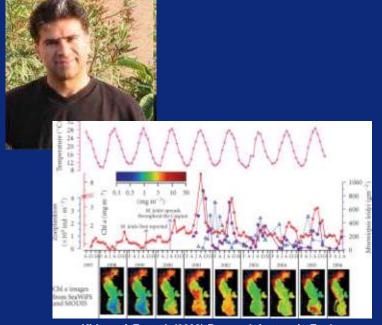
New Species Discovery



CMarZ new species descriptions (published):

		New	New	New
Phylum	Group	Species	Genus	Family
Cnidaria	Hydromedusae	2	1	1
	Narcomedusae	1	1	
	Siphonophores	1		
	Scyphomedusae	2		
Arthropods	Amphipods	1		
	Copepods	19	1	
	Ostracods	3		
	Mysids	49	1	
Annelids	Polychaetes	1		
Chaetognaths		2		
TOTALS		81	4	1

- > Estimated new species 'discovered' = over 100.
- Group-by-group analyses include:
 - Handbook of the Radiolaria. Monographic publication now in press. [Demetrio Boltovskoy]
 - Taxonomy, phylogeography, and phylogeny of chaetognaths. [Annelies Pierrot-Bults]
 - Atlantic atlas for the planktonic ostracods: Publ. on NHM (London, UK) website. [Martin Angel]


Impacts on Society

Ballast Water in Argentine Ports:

Transoceanic ships' ballast water was monitored; salinity is measured; plankton samples are collected and distributed among 10 specialists in various taxonomic groups for identification of freshwater and marine zooplankton. [Demetrio Boltovskoy -**Argentina**]

Kideys, A.E. et al. (2008) Research Letters in Ecology

Impacts of a Marine Bioinvasion:

Sampling from the Caspian Sea showed striking impacts of the invasive predatory ctenophore *Mnemiopsis leidyi*. Satellitederived chlorophyll-a concentration was significantly correlated with ctenophore biomass. By consuming grazing zooplankton, *M. leidyi* may have caused levels of ChI a to rise to record high values (9mg/m³). [Ahmet Kideys - Turkey]

CMarZ Education & Outreach

JSPS-CMarZ Training Course, Univ. Philippines, Los Baños, Dec. 2004

Asahi Press, Jan. 2010

Rosamma Stephen at AWI, July 2006

CMarZ has organized >358 E&O events attended by >1,400 people, excluding television audiences. Activities have included:

- Advanced training in taxonomy and DNA barcoding for researchers,
- Field trips for elementary school students,
- Newspaper and magazine articles for the general reader.

Visualization & Communication

Goals of this Meeting

- 1. CMarZ Symposium
 - New results and findings
 - New perspectives and analysis
- 2. CMarZ Synthesis
 - Sample collection and analysis
 - Data collection and analysis
 - Reports and publications
 - Education and outreach
 - Communications
- 3. CMarZ Synthesis Products and Plans
- 4. Planning for CoML finale and CMarZ wrap-up
 - Posters and presentations
 - Proposals for new funding and next steps

В